
Geometry-Based
Watermarking of
3D Models

Current watermarking technology focuses
on media types like still images,lm4 and

video5 and audio streams? Obviously, more and more
CAD-based 3D data is entering the World Wide Web,
mostly as Virtual Reality Modeling Language (VRML)
scenes. Accordingly, companies or copyright owners who
present or sell their products in virtual space will face

copyright-related problems. The
straightforward demand is to pre-

This article addresses the vent their SD-based (catalogue)
material from unauthorized (unli-

fundamentals of geometry- tensed) use. Illegal use of copy-
righted material can be prevented by

based watermarking. It introducing a licensee’s identity into
data. The copyright owner can then

presents a watermarking identify the source from which ille-
gal copies spread.

algorithm that modifies VRML scenes involve at least
three different media types that are

normal distribution to candidates for watermark insertion:
audio samples, textures and back-

invisibly store information in ground images, and 3D geometry
(model) based data. Data of the first

the model’s geometry. two types might be removed from a
VRML scene without significant loss

of the scene’s value. Attackers could easily exchange tex-
tures and audio files suspected of containing water-
marks for new (unwatermarked) ones. Because the
geometry-based components usually take most of the
effort in generating a VRML scene, those components
make up most of its value.

Private and public watermarks
In general, watermarks divide into private and pub-

lic watermarks. \

Prh te watermarks
A private (secret) watermark may contain informa-

tion for identifying the licensee or to prove ownership
in disputes. Retrieval of secret watermark information
requires at least one secret key, known only to the
embedder. A private watermark puts heavy demands on
a watermarking algorithm regarding robustness,
althounh the demands for canacitv are relaxed. Embed-

Oliver Benedens
Fraunhofer hc@ute for Computer Graphics

ded information usually includes licensee-identifying
serial numbers or hash values. In general, a serial num-
ber is just a pointer or link to externally stored informa-
tion, such as a customer record./

P&d watermarks
A public watermark is retrieved by the receiver

(licensee) of copyrighted material. It usually contains
copyright or licensing information, such as the identifi-
er of the copyright holder, the creator of the material,
or a link (URL) through which to fetch more related
information. It may contain a serial number that unique-
ly identifies material to registration entities. Retrieving
a public watermark requires no information but the
model data itself plus a specific key, unique among mate-
rial generated by one or various creators or copyright
holders.

In respect to 3D model-based data, a public water-
mark replaces headers or sections in object file formats
that might contain arbitrary user-defined information,
such as comments. This information is likely to be
stripped off during format conversions.

A public watermark puts heavy demands on a water-
marking algorithm regarding capacity. Because a pub-
lic watermark provides additional copyright-related
information for receivers and doesn’t aim to prove own-
ership or identify licensees, the requirements regarding
robustness are relaxed.

In comparison to audio, video, and still-image data,
the task of watermarking 3D models faces some specif-
ic problems:

n You must deal with a low volume of data (with respect
to separate objects).

n Handling and editing may involve a variety of com-
plex geometrical or topological operations. A variety
of tools are available for this purpose-modelers.

w No unique representation of model data exists. Mesh-
es consisting of different vertices, edges, and faces
can represent a model surface, and vertices, for exam-
ple, can be moved randomly by relatively large
amounts without degrading overall visual quality.

n No implicit ordering of data exists. Audio and video
data are sequenced in time series, while data in still

Form SF298 Citation Data

Report Date
("DD MON YYYY")
01011999

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY")

Title and Subtitle
Geometry-Based Watermarking of 3D Models

Contract or Grant Number

Program Element Number

Authors Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Fraunhofer Institute for Computer Graphics

Performing Organization
Number(s)

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym

Monitoring Agency Report
Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Document Classification
unclassified

Classification of SF298
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
unlimited

Number of Pages
11

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

1/1/99
3. REPORT TYPE AND DATES COVERED

Article
4. TITLE AND SUBTITLE

Geometry-Based Watermarking of 3D Models
5. FUNDING NUMBERS

6. AUTHOR(S)

Oliver Benedens

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

IATAC
Information Assurance Technology Analysis
Center
3190 Fairview Park Drive
Falls Church VA 22042
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

 AGENCY REPORT NUMBER

Defense Technical Information Center
DTIC-IA
8725 John J. Kingman Rd, Suite 944
Ft. Belvoir, VA 22060
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

 A

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This article addresses the fundamentals of geometry-based watermarking. It presents a
watermarking algorithm that modifies normal distribution to invisibly store information in
the models geometry.

14. SUBJECT TERMS

Watermarking,
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

None

i
,

g

;r

h-
es
n-
!ie

e0

:ill

images and video frames (pixels) are scanline-
ordered. Model data like vertices, edges, and faces
can be ordered, but this requires at least a fixed ori-
entation and eventually a position of data in space.

Some problems closely resemble those of other media
types:

n The process of lossy compression is likely to modify
3D model data. To achieve adequate rendering
speeds, the volume of data is reduced by applying
polygon simplification. This resembles still images
undergoing wavelet or JPEG (Joint Photographic
Expert Group) compression, and video and audio
streams undergoing MPEG (Moving Pictures Expert
Group) compression.

n Synchronization problems occur. During the embed-
ding process performed by a watermarking system,
the algorithm might detect locations unsuitable for
information embedding. The algorithm might either
try to embed some sort of “not used” watermark or
skip these locations. For 3D model data it seems a
hard problem to define a reliable criterion that tells
you which of a given sequence of embedding loca-
tions have been used. However, such a criterion is cru-
cial for realization of public watermark systems.
Without it an algorithm must rely completely on error
correcting codes and/or redundant embedding.

Required properties of 3D watermarking
systems

A watermarking system designed for 3D model data
should have the following properties at a minimum.

Cupucity
The system should allow embedding of nontrivial

amounts of data. Embedding serial numbers that iden-
tify buyer or licenser identities requires at least 32 bits
of capacity. Proving ownership requires enough capac-
ity to store a hash value (for example, 128 bits for the
MDS-Message Digest-hash function and160 bits for
the SHA-Secure Hash Algorithm). Space requirements
of information embedded in public watermarks range
from a global model registration number of 32 bits up to
a URL from which to get copyright- or licensing-related
information, which could take 256 bits or more.

A class of watermarking systems, called statistical
approaches, hashes information of arbitrary length and
feeds some sort of random number generator with it.
This generator yields locations where data is modified
in respect to some global statistical measures like mean
value and variance. These systems permit testing for the
presence of watermarks whose contents are known in
advance. While these systems might claim to have unlim-
ited capacity, they have drawbacks. For example, iden-
tifying the licensee of a model found on the net requires
testing all licensers’ identities (generator seeds).

Robustness
As a matter of principle private watermarks should

exhibit resistance to all geometric or topological opera-
tions that don’t substantially degrade the model’s visu-

al quality. (Most of these operations have already
appeared elsewhere.7) The list includes

n Rotation, translation, and uniform scaling
H Polygon simplification (often needed to achieve ade-

quate rendering speed)
n Randomization of points
n Re-meshing (re-triangulation); generating equal

shaped patches with equal angles and surface
H Mesh smoothing operations
n Cut (sectioning) operations-removing parts of the

model as in backface culling ’
n Local deformations

Other, more complex geometrical operations will like-
ly degrade visual quality and usability. Thus a water-
marking system’s primary goal is definitely not
robustness with respect to the following operations:

w Shearing
n Nonuniform scaling along arbitrary axes
n Projections, as projection on a plane
H Global deformations

Recommended properties of 3D
watermarking systems

In addition to the required properties, 3D water-
marking systems would benefit from further capabili-
ties, as follows.

Background processing and suitable speed
Embedding and retrieving watermarks should be pos-

sible without user interaction. Automated search of Web
sites and databases for watermarks performed by robots
(“agents”) are an important application in monitoring
the use of both legal and illegal copies and in enforcing
the copyright. The ultimate goal in this respect is real-
time monitoring. However, this puts heavy demands on
watermarking systems’ execution speed and storage
requirements.

Embedding multiple watermarks
Real-world applications might demand the possibili-

ty of embedding multiple watermarks. This occurs in the
producer/resellers pipeline, in which producers embed
a secret watermark identifying resellers and resellers
embed one identifying customers or end licensees. Ide-
ally; the watermarks should not interfere with each other
(with high probability) even if producers keep the details
of their embedding parameters secret.

Minimum knowledge of a priori data
An ideal system requires only model data and knowl-

edge of a key for watermark retrieval. The key may be
specific to the model’s creator or company, model class,
model itself, and/or licensee. All necessary parameters,
such as seed values for generators, derive from this key.

In a public watermark system all of a creator’s models
may share a unique key. Alternatively, the system might
use a key common to models from various creators.

Unfortunately, a retrieval system may demand knowl-
edge of more a priori data:

Knowledge of the model itself, especially model-
specific embedding locations to avoid synchroniza-
tion problems

I Original model data or at least parts of it (the feature
vector) for reorientation, resealing, and comparing
features of a watermarked copy with the original

Such a retrival system has reduced monitoring and
lackground processing features. Decentralized retriev-
ag of watermarks gets complicated, especially when it
evolves accessing large amounts of original model data
rganized in databases.

Minimum preprocessing overhead
An ideal system should allow immediate access to

embedded watermarks, without preprocessing model
iata. Such preprocessing might involve transforming
he model data representation, recognizing the model,
:orrecting surface normals, and reorienting and scaling
Nith respect to the original.

Status quo of 3D geometry-oriented
watermarking systems

The previous two sections proposed required and rec-
3mmended properties of systems watermarking 3D
geometry. Ohbuchi, Masuda, and Aono7 produced the
first publication on 3D watermarking, in which they pro-
posed a large variety of techniques. The techniques
described fall roughly into mesh altering, topology alter-
ing, and visible pattern embedding methods.

The mesh-altering methods, especially their proposed
Tetrahedral Volume Ratio (TVR) algorithm, show near-
optimal properties with respect to capacity, execution
speed, and monitoring capabilities. The significant
drawbacks include vulnerability to re-meshing opera-
tions, polygon simplification, and point randomization.
Nevertheless, their algorithm proves well suited for
embedding public watermarks.

Topology altering methods, which basically embed
information by cutting holes in a mesh, are trivially vul-
nerable against attacks that scan for these holes. The
visible pattern embedding method, Mesh Density Pat-
tern7 (MDP), is vulnerable to a re-meshing attack that
generates patterns with mostly identical shapes (angles
and size).

Embedding private watermarks by
altering normal distribution

The watermarking system I propose in this article
handles embedding private watermarks. With this sys-
tem I wanted primarily to achieve robustness against

n Randomization of points
n Mesh altering (re-meshing) operations or attacks
n Polygon simplification

The central idea driving this system is the observa-
tion that the operations mentioned may cause large
changes in model vertex and face set configuration,
adjacencies, and eventually topology.

A 3D object can be seen as a collection of surfaces with
arbitrarv size and orientation. There exists nearly an

infinite amount of meshes representing or approximat-
ing one particular set of surfaces, with varying perceived
quality.

The idea is to use collections of surfaces as an embed-
ding primitive. If a model’s representation changes in
response to the operations mentioned, the new vertex
face set configuration has to maintain global surface char-
acteristics regarding size, orientation, and curvature, at
least of perceivable features, otherwise a loss of visual
quality will occur. (Of course, visual quality depends on
viewing distance. Simply assume that a model subjected 8
to extensive alterations will be used for the same purpose,
under the same conditions, as the original.)

The system proposed in this article introduces modi-
fications in object-model normals distribution to achieve
independence from one particular mesh representation.
It requires a mesh representation of a 3D model con-
sisting entirely of triangle patches as input. This origi-
nal model is denoted byA4. A watermark, W-a bit string
of arbitrary contents and length-is embedded in this
mesh by performing certain displacements of points,
which in turn introduce specific changes in mesh sur-
face timals distribution. The resulting mesh A4’ again
cons&s of triangle patches, with no topological or adja-
cency (vertices or faces) changes with respect to M. *

Before describing the embedding process, I need to
define and explain the terms “bin” and “extended Gauss-
ian image” (EGI). As already mentioned, the system uses
a collection of surfaces as an embedding primitive.
These collections are generated by grouping model nor-
mals into distinct sets called bins. A bin is the entity for
embedding one bit of watermark data. It’s defined by a
center normal in 3D space normal and possibly a radius.
The decision on which set to assign a normal is ruled out
by the difference (in angles) of the normal to each set’s
center normal, called bin center. A normal gets assigned
to the bin with the minimum difference.

The bins can be constructed in a general way by tes-
sellating the unit sphere, for example by projecting sub-
divided regular polyhedrons (platonic solids). This results
in bins with equal area size and angles. While these prop-
erties prove useful in determining object pose and orien-
tation, they aren’t necessary for embedding watermarks.

Instead, a random number generator may generate a
sequence of bin center normals. Or, we might search
spherical data for suitable centers, which fulfill restric-
tions regarding minimum surface curvature, the num-
ber of normals within a certain radius around the center,
and a suitable normal vector distribution-bin data that
don’t contradict the watermark embedding or retriev-
ing procedure.

The discrete approximation of the EGI,8D9 called an
orientation histogram, provides a graphical represen-
tation of the described sampling of model normals.
Each vector corresponds to a bin center, its direction
corresponds to the bin center normal, and its length
corresponds to the sum of face sizes of normals con-
tained in the bin. Figure 1 shows an example for this
representation.

Although not correct in terms of definition, for con-
venience I’ll use the term EGI as a synonym for the ori-
entation dianram in the following sections.

The embedding and retrieval processes consist of sev-
eral stages, as follows:

General outline of the embedding procedure:
(El) Calculate consistent surface patch normals
(E2) Sample model normals to bins
(E3) Apply core watermark embedding algorithm

General outline of retrieval procedure:
(Rl) Calculate consistent surface patch normals
(R2) Transform model into spherical representa-

tion (EGI) and adjust model orientation
(R3) Sample model normals to bins
(R4) Apply core watermark retrieval algorithm

To explain the embedding and retrieval processes, I’ll
go through the procedures according to these steps.

Calculating consistent surface normals (E 1)
The method depends on consistent surface patch nor-

mal directions. Modelers (or attackers) may produce
models with patch normals not pointing in an outward
direction; in the extreme, normals point randomly in-
or outwards. We don’t need correctly oriented normals
(all pointing outwards) so much as we need reliable
directions. That means the same model always yields
the same normal directions for its patches.

To accomplish this, first calculate the center of mass
(of the point set) for a given model M. For each patch
cast a ray from the center of mass through the center of
the patch and determine angles to both possible nor-
mals. Choose the normal with the greater angle as the
surface patch normal. The triangle points are ordered
counterclockwise.

For convex objects, the normals determined in this
way will all point outwards.

Sample model normals to bins (E2)
Conventions: In the following we always operate on

normalized vectors. 1
Define NB as the total number of bins, BCi &‘R3 as bin

centers, and IQ E [0, . . ., 7c/2] as radius (an angle mea-
suredinradians;i=l,..., NB).Eachbini(i=l,..., NB)
is assigned all the model’s normals whose angle differ-
ence to the center normal is less than &. Let BNi be the
total number of normals sampled to bin i. Let BPu E R3
0’ = 1, BNJ be the normals sampled in bin i.

Assume bins do not overlap. This can be simply
assured for a given set of bin centers by assigning each
bin center a radius less than the minimum angle differ-
ence to all other bins. Implicitly, surface normals will
exist that do not fall in any bin.

Core watermark em bedding algorithm (E3)
For embedding one bit of information, the mean nor-

mal of a bin-the center of mass-is moved in a certain
direction. Embedding a bit string of length n requires
center of mass modifications in n bins. These modifica-
tions are performed by displacing vertices in the mesh,
thus altering adjacent face (triangle) normals, which in
turn cause changes of the center of mass in their
assigned bins.

1 The left image shows an orientation histogram of Wagner’s bust as
shown in the right image. The bins were constructed by projecting an
icosahedron on a unit sphere and further subdividing triangles two times,
yielding 320 bin centers. The large normal vector pointing downwards
results from the large triangles forming the base of the bust.

The contents of a bin can be transformed from 3D into
a 2D representation with the bin center as origin and
bin boundary the unit circle of radius 1. Since the 2D
representation has advantages for illustrating the
embedding and retrieval algorithm, the next section
describes the transformation, which I also used in fur-
ther illustrations.

Transforming bin normals from a sphere
surface representation onto a circle in R2. The
transformation for the bin with index i (i = 1, . . ., NB)
follows.

First calculate two vectors, Xl, XZ E R3 orthogonal to
each other and bin center& These vectors become the
two principal axes of the 2D coordinate system.

Rotate BCi onto they axis by performing two succes-
sive rotations around the z and x axes. Apply the inverse
of this transformation to thex and z axes, yielding the two
principal axes, Xi andX2, of the 2D coordinate system.

Next transform the bin contents, normalized 3D vec-
tors B&j (i = 1, . . ., NB,j = 1, . . ., BNi) into its 2D coordi-
nate pair pd = (xii, y$ by

h = BCi * BPc, Zl= COS-1 (h), P = BPu - h * BCi

We can suppose that h lies between 0 and 1 (differ-
ences of bin center and sampled normals are supposed
to be less than 90 degrees).

Xp =X1”BPij
yp =x2*mj

12 =I(xp YP)I

xv =

1

*L h>&
xp h

0 l2 <&

*L
yij =

1
YP h

12 >&

0 E CE

with the appropriate value for E (for example, 10”).

2 Transforma-
tion of bin
contents from
30 space onto
the plane.

3 Embedding
one bit of infor-
mation in a bin
by pushing the

_ center of mass
in a certain
direction.
Yoi’ve success-
fully coded a
“1” bit if the
center of mass
moves into the
marked section
of the circle.

00q01
Xl
-w

by the function optimizeVertex() to search a vertex’s
surroundings for a local cost minimum and itself calls
costFunc() to evaluate the costs of certain vertex dis-
placements.

The (calling) dependencies of these functions follows: i

main ()
optimizevertex ()

costs ()
multidimensionDownhillSimlex ()

costFunc ()
costs 0

During the optimization process only the location of
vertices in mesh M changes. The topology remains unal-
tered, with adjacencies unchanged. No degeneracies are
introduced. .

The process also maintains sets containing the origi-
nal and normal values of triangles as well as their 2D
counterparts.

mai@:
6 = ifiitial search range
for i = 1; i < number of iterations; i+ +

for each point P in model
,

forj = 1; j < number of refinements; j+ +
optimizeVertex (P, 6)

reduce 6

This transformation appears in Figure 2. The multidimensionalDownhillSimplex() function
LetS=s 1, . . ., SN~, siE { O,l}, i= 1, . . ., Na be the bit-string evaluates 6. It determines the search range radius and

to be embedded in model M. therefore restricts search space. After each iteration
Next for each bin i calculate the center of mass comi = through all vertices of the mesh, this value decreases.

(ai, vi) : The desired effect resembles optimization using simu-
lated annealing methods.

1 BN, This function iterates a number of times through the
COmi =-

cBNi j=l
pij, (i=l,...,NB) model’s point set. The function optimizeVertex is

called with the current point and 6 as parameters. opti-
mizeVertex() tries to find a new local minimum with

The distance of each point to bin center is respect to the cost function costFunc() in the neighbor-

hk, = JXf+r,”
hood of P. If it succeeds, optimizeVertex updates P
with new point coordinates for which a new minimum
of costs was reached (it alters the mesh). optimizeVer-

Next, an optimization process iterates over the tex() iterates this process a number of times with the
model’s set of vertices, as described in the next section. newly found minimum as the starting point.

Detailed description of the embedding optimizevertex (Vertex P, Factor 6):
process. The embedding process seeks to move the initialcosts = costs(P)
center of mass of each bin (in the 2D representation P’ = multidimensionalDownhillSimplex (initialCosts,
described above) to the left (bit 0) or right (bit 1) side e 6)
of the initial position. It does this by displacing vertices, alter mesh by exchanging P with P’ \
which in turn modify surface normals. Figure 3 illus-
trates this process. This function is just a wrapper for multidirnensional-

At the core of the optimization process, applying an DownhillSimplexO. It calculates initial costs caused by
implementation of the multidimensional downhill sim- the initial position of point P and calls multidimensional-
plex” lets you explore a given vertex’s neighborhood for DownhillSimplex() to find a new local minimum. The
a local minimum of costs. latter returns the found minimum position P’ or, if no

The detailed embedding process is presented by improvement is possible, the initial position.
describing three functions as pseudocode: main(), The coordinates of point P are updated by replacing
optimizeVertex(), costFunc(), and costso. A fifth, P with P’.
multidimensionalDownhillSimplex()-an implemen- The multidimensional downhill simplex calls
tation of multidimensional downhill simplex-is called costFunc() :

costFunc (Vertex P):
maxcosts = 0
if search space exceeded return 2 /* 2 is max value

for costs */
for all triangles normals TN adjacent to point P

if TN not contained in marked bin
if difference actual TN and original TN >

a return 2
if TN cotained in marked bin

if difference TN and original TN > b or
TN left bin return 2

else
c = costs (TN)
if (c > maxcosts) maxcosts = c

return maxcosts

costFunc() checks for violations of the general con-
straints. If the general constraints regarding search
space and maximum tolerated normal changes are vio-
lated, maximum costs of 2 are returned to prevent the
simplex from further considering the position. Without
violations of constraints, costs range from 0 to 1.

a and p are the maximum tolerated normal differ-
ences for normals not contained in bins and normals
contained in bins, respectively.

costFunc() iteratesover all triangles adjacent to point
P and calls the costs0 function with triangle normals.

Instead of returning maximum cost value, the process
could instead sum the costs returned by the costs0 call
and divide by the number of triangles contributing to
costs. This approach, however, showed no gain in per-
formance during testing.

costs (Normal N):

Finally, at the end of the call chain, the costs(Norma1
N) function calculates costs based on how much nor-
mal N contributes to the goal of moving the center of
mass in the correct half-plane (half-space in 3D) of the
associated bin. 1

Next, assume that N corresponds to the h&ma1 BPG
(the real cost function is called with more parameters
identifying the associated bin). Before this calculation N
is transformed to the bins’ 2D coordinate system, denote
the resulting coordinates asp;= (xiy$. The original point
coordinates before starting the optimization process are
pi = (x9, ~0). Figure 3 illustrates the situation described.

The costs c returned to the caller are calculated as
follows:

r=JW

dig= XijjX$

i

Si=l

XIJ X@ Si=O

Cl = 1 r-finit,, 1

2 1 @f (>Amax
.c2 =

1

&ax -diI Osdifl~Ahmax
1 -&lilX Idi+

c=w1*c1+w2*c2

(1)

with certain weights WI, w2 E [O,l] and wi + w2 = 1.
Two components contribute to the costs: the radius

with respect to the original point coordinates, and the
amount of shift in the x direction, which directly influ-
ences the center of mass x coordinate.

A positive amount of shift means the center of mass
moves in the direction of the proper half-plane. The
more the shift, the less the cost. A push against the prop-
er direction is sanctioned with costs of 1.

Amax is a constant value that restricts the maximum
gain or loss in the x direction. In experiments this value
helped to keep points from leaving bins. Exceeding a
Amax gain or loss causes maximum costs of 2.

Without the radius difference being part of the costs
function, in tests the algorithm behaved too “greedily”
in realizing close to Amax gains. It also increased the
radius by large amounts and moved the bin’s contents
closer to the border, where they were likely to leave the
bin during mesh altering operations such as polygon
simplification.

The actual values of variables used in experiments
follow: The optimal values for weights wr and ~2,
observed in experiments and used in documented test
cases, were 0.4 and 0.6, respectively.

The number of iterations (through the point set) in
main0 was 3, the number of refinements was 2, A,,,=
was 0.3, a = 5 degrees, B = 10 degrees, and 6 remained
constant through all iterations. Note that A- effectively
restricts the amount of normal shift in the x direction
for bin i by Amax * &, the radius of bin i.

After completion of the main function, the model’s
input mesh had been transformed into an output mesh
in which a watermark with contents of bit-string S was
embedded.

For watermark retrieval the original center of mass
values comi together with bin center positions BCi (i =
1 , NB) have to be stored, for example in a file.

Retrieving the watermark
Retrieving a watermark requires the reader to know

the following a priori information: The number of bins
NB, their positions (bin center normals) BCi, their radius
I+, and their original center of mass value comi = (ai, vi).
Also present must be additional information (not speci-
fied here) about the enabling precondition for object
reorientation. Of course, these values are identical for
watermarked copies of one particular model and there-
fore’need only be stored once.

The retrieval algorithm can be described rather
briefly, since most of the processing is identical to the
embedding process until it reaches the mesh alteratior
process described in the previous section.

Calculate consistent surface normal patch
es (Rl). Follow the procedure described in stage El.

Transform model into spherical represen
tation (EGI) and adjust orientation (R2). The
problems affecting the reorientation process appear ir
a later section.

0 0.87 - 0.00

Itinch
-

4.661 9,380 0 0.84 0.00
7,328 1 0.65 0.06

s ';c‘*" I " - .-j 7 I, 1
Cinch'

.) -' -7
r: " *Q.; SLH. ':;.: '.I i : (',f ;:.: >'".' ' 2,799 5,760 .4 0.51 0.25

0.36 0.00

7.395 14.786 0 0.64 - 0.00
- ‘I- --

6,054 5 0.26 0.19

: 1 8,353 16,666 0 0.72 0.00
'-467 14.930 0.06

11,978
3 0.65
7 0.52 0.14

3,482 12 0.15 0.24
": 3 Simplify 1,617 3,220 16 0.14 0.32

: Crunch 9,770 19,610 2 0.85 0.04
* * Crunch 8;072 16,306 6 0.71 0.12

Sample model normals to bins (R3). The
model normals are sampled to the bins (a priori data)
as described above.

Core watermark retrieval algorithm (R4).
The bin contents are transformed from 3D to a 2D rep-
resentation and the center of mass is calculated as
described above.

Denote the calculated center of mass values with
corn{ = (cd, cy[), i = 1, NB.

The watermark contents S’ = s’r, sh,,, sic {OJ},
i=l , . . ., NB are simply calculated by

(2)

In fact, we only test for each bin if a left or right shift
of the center of mass with respect to the original value
was introduced.

Experimental results
The algorithm just described has been implemented

in C + + using the graphics package MAM/VRS (Model-
ing and Animation Machine/Virtual Renderings Sys-
tem) ? The downhill simplex implementation came from
the second edition of Numerical Recipes in C--The Art of
Scientifc Programming’o with only slight modifications.

To test the algorithm’s properties for robustness
against polygon simplification, I applied two simplifi-
cation programs, plycrunch and plysimplify, to the
watermarked model of Wagner’s bust. Both programs
belong to the software distribution of the Simplification
Envelopes implementation.‘2D13

n plycrunch simplifies an object by sharing nearby ver-
tices. This method does not preserve the topology of
the original model.

n plysimplify attempts to minimize the total number of
polygons while guaranteeing that all points of an
approximation lie within a user-specifiable distance
from the original model and vice versa. plysimplify
preserves the topology.

The three models of Wagner’s bust used for the test
series were all polygon reduced versions of the laser-
scanned original:

n Model 1: 3,923 vertices, 7,842 faces (triangles)
n Model 2: 5,616 vertices, 11,228 faces
n Model 3: 11,488 vertices, 22,972 faces

Table 1 summarizes the results of six test cases. It lists
the operation applied, number of vertices and faces after
applying the operation, absolute loss of watermark bits,
relative loss, and reduction, which is simply the quotient
of the number of faces after and before applying the oper-
ation. The model simplified precedes each list of results,
along with the radius common to all bins. “m of n” bins
means that the unit sphere was tesselated with approxi-
mations of n evenly distributed bin centers from which
m were randomly chosen for embedding watermark bits.
The bins did not overlap. The bin centers were calculat-
ed with the application tessel,14 which tessellates a sphere
with points while trying to minimize maximum distances
of each pair of points. For testing, tessellations with 16,
32, and 100 points (normals) were generated. From these
16 (tests 1,3,4,5> or 50 (tests 2,6) bins were selected
randomly for embedding watermark bits. In no test case
did the bins cover all of the models’ surface normals.

Figures 4,5, and 6 show the models for test case 4. This
test case produced the highest observed level of robust-
ness. However, as you can see in the left image of Figure
5, a trade-off of visual quality resulted. The regions
around the mouth were distorted, for example. One rea-
son this trade-off occurred was because of the maximum
bin size, with a a°ree radius. Thus, in this test, a max-
imum amount of the object’s surface was contained in
bins and subject to alteration by the embedding process.

The other reason for the trade-off was driven by the
fact that, if the number of elements in a bin increases,
the number of conflicts during optimization increases.

. Conflicts arise when constraints regarding maximum tol-
erated angle differences prevent normals of marked bins
from being pushed in their proper directions o&hen the
several push directions show up as contradictory.

For a smaller bin radius, visual quality improves, but
robustness decreases. You can see this in Figure 7 and
for test case 6 in Table 1.

Note that in all tests performed, the watermark bits
remained after the embedding process. This result was
not necessarily expected because, as already stated, the
watermark embedding algorithm bears certain conflicts.
To guarantee this stability, it sufficed to select bins con-
taining a number of normals large enough to compen-
sate for normals entering during the embedding process.

Coding a 0 or 1 in a bin presents two different opti-
mization problems. In general, embedding different bit
strings presents different optimization problems. Nev-
ertheless, the tests showed no evidence that either of
the two values was more stable or that one bit string
remained less stable than the others. This property is
important for embedding arbitrary bit strings at con-
stant positions.

I must stress that, when selecting the embedding
positions, I did not take into account properties of the

reduction methods applied. The
results should reveal if the embed-
ding algorithm holds general poten-
tial against mesh simplification
methods. The crunch results, for
example, improve significantly if
bins are selected whose contents are
mostly located in low curvature
regions. For the test model these tri-
angles, were larger in si\ze, causing
larger vertex distances. This prop-
erty leaves a higher percentage of
the bins’ vertices untouched by the
crunch algorithm.

4 The original bust with 11,488 ver-
tices and 22,972 faces (test case 4).

5 The left image shows the bust after embedding a watermark of 16 bits in
length. The bin radius was 22 degrees, and 16 of 16 equally spaced bins
were selected. The right image shows triangles contained in selected bins

(red) and triangles whose normal changed by more than 0.5 degrees and
not contained in selected bins (green).

6 The left image shows the watermarked bust after applying plycrunch
(size was reduced to 3,153 vertices and 6,452 triangles). The right image
shows the bust after applying plysimplify (2,048 vertices, 4,052 triangles).
In both cases the watermark was still present (test case 4).

7 The bust after embedding a SO-
bit watermark (test case 6). The bin
size was 10 degrees, and 50 of 100
equally spaced bins were selected.
Red faces represent triangles con-
tained in the selected bins; green
faces represent triangles whose
normal changed by more than 0.5
degree and not contained in a
selected bin.

Some bins showed more robustness than others. Their information. In the retrieval process, decode bit string
lin value remained stable up to a certain simplification to string with the minimum hamming distance.
ate. Interestingly, for the majority of bins the (false) n Seed a random number generator with information.
alue did not change again at higher simplification rates. The output determines embedding positions (bin cen-

The results could have improved by repeating the ters) or, for example, the rotation angle of a prede-
Nmbedding process with the bins that showed them- fined set of positions. Embed a “010101” sequence,
elves to be stable after mesh alteration. The problem- for example. During the retrieval process, check for
nd subject of further research-is to identify the stable all possible watermarks. Select the one with the min-
bins prior to mesh alteration. imum hamming distance to sequence.

leorienting watermarked models
The watermark retrieval process is preceded by an

bbject recognition and orientation stage (not the sub-
ect of this article). To discover the demands on the pre-
ision of the orientation process, I reoriented the
watermarked object before performing the extraction
lrocess. The required precision for retrieving the water-
nark without loss of information varied between 2 and
5 degrees, depending on bin radius.

I am developing an orientation module that tries to
ind a complete subgraph, consisting of three to five ver-
:ices, of the original model EGI in the watermarked
node1 EGI representation. Each vertex of this graph cor-
-esponds to a bin center, and each edge length corre-
iponds to angle differences of centers in the EGI
.epresentation. After matching the subgraph, the mod-
lie must find the correct orientation by testing orienta-
:ions in a small range (targeted 10 degrees). The
decision as to when orientation is correct or sufficient
:an be based on detecting, for example, a constant por-
ion of the embedded watermark.

If the original is accessible during the orientation
process, several subgraphs could be generated on the
ny from the original model and matched against the
watermarked copy. This aspect proves important in
mes where the watermarked copy consists only of parts
of the original model. The regions important to pre-
computed subgraphs might be missing in this case.

Compensating for failure rates
If you use the algorithm for embedding arbitrary

information (bit strings), techniques to compensate for
failure rates include

n Increase information redundancy. Repeat the bit
string n times and do “majority voting” in the retrieval
process.

n Apply error-correcting codes.

The need for embedding arbitrary information arises
mainly for two cases: embedding information allowing
proof of ownership (a hash of the original model) and
public watermarks (for example, a URL or IP address of
the creator/copyright holder’s Web site).

If the watermarkjust needs to point to external infor-
mation, as when embedding tracing information such
as the model licensee’s identity, you can apply the fol-
lowing techniques:

n Instead of embedding things like consecutive serial
numbers, embed random bit strings. Map these strings
to such things as actual serial numbers or customer

Improving the watermarking algorithm ’
The watermarking algorithm as described and imple-

mented can be considered a bare bones solution. A vari-
ety of possibilities exist for improving it:

n Each normal contained in a selected (meaning used
for embedding) bin could be assigned a weight cor-
responding to its surface relative to the total surface
of the bin to which it belongs. This weight should be
used in cost function and center of mass calculations.
Currently, all normals in a bin contribute equally to
the center of mass calculation. Assigning a weight to
each n ‘mal would let the algorithm modify far fewer

Inorma s to achieve the desired center of mass devia-
tion. It would sufficice, for example, to change the ’
normals with the largest weights that occupied 30
percent of the bin’s total surface. The disadvantage is
the increased sensitivity of the bins center of mass
with respect to normals with large weights entering
or leaving the bin.

n Select bins whose contents are (mostly) located in
regions of the model that can be considered percep-
tually important features. A good starting point would
be to select regions containing or located near sharp
edges with reasonably large surface sizes.

H Take the surroundings into consideration when
choosing a bin center position and radius. If the
majority of normals occupy the outermost regions of
the bin and a large number of normals lie outside, at
the bin’s border, the center of mass will change sig-
nificantly due to normal exchanges with the bins sur-
roundings. If weights are assigned to normals, the bin
center must be located in a position such that normals
with the largest weights lie near the center and oth-
ers outside the bin lie far from the border.

n Some bins showed outstanding robustness in tests
compared to others. Reverse engineering might lead
to reliable criteria for ad hoc judging of a bins quality.

n Reduce the contribution of normals lying far from the
bin center in the center of mass calculation. Normals
with large distances will likely leave the bin in ,
response to mesh manipulations. Alternatively, points
not contained in a bin but near the bin’s border are
likely to enter the bin. A simple step along these lines
during testing did not improve the results: Before cal-
culating the center of mass, all points with a radius
greater than RI (Ri < 1) were dragged (orthogonal
projected) onto the border circle with radius Ri to
reduce their x- and y-values and thus their contribu-
tion to the center of mass.

n As you can see in Figure 1, the regions for coding 0 and
* 1 bits differ in size. Although not observed in tests, this

might result in a coded 0 bit being more stable than a
coded 1 bit for the same bin or vice versa (assuming
modification processes introduce random changes in
center of mass values). The regions can be adjusted to
equal size simply by rotating the bin contents around
the center by an amount that places the center of mass
on the x-axis.

Conclusion
I proposed a watermarking algorithm to embed pri-

vate watermarks. The algorithm showed promising
potential with respect to robustness against mesh
simplifications.

The highest rate of robustness achieved was resis-
tance to a simplification that reduced the model to 36
percent of its original number of faces (test case 4). As
already mentioned, many possibilities exist for
improvements and further fine-tuning. Since bins were
selected randomly as embedding positions in test cases,
a more elaborate strategy for selection of embedding
positions should improve the results.

One drawback of the algorithm is the large amount
of a priori data needed before watermark retrieval. For
private watermarks, this is tolerable. A more relevant
drawback is the amount of preprocessing needed before
the watermarking core algorithm can be applied.

This preprocessing involves reorientation. The
demands on this process regarding accuracy are quite
relaxed. A first broad orientation with an error of 10
degrees with respect to the original orientation should
suffice. In a second orientation stage the precise orien-
tation (with two to three degrees of error in document-
ed test cases) would be determined by random testing.
To recognize the correct orientation, a constant
sequence could be embedded in a portion of the water-
mark. The number of correct bits with respect to this
sequence increases near the correct orientation.

The watermarking system proposed doesn’t suit
embedding public watermarks because the system can-
not be realized without a certain amount of a priori data
that must be known to the reader in advtike of water-
mark retrieval. We may use fixed values for the positions
of bin centers and radius, and even for orientation
(always orient the model with respect to directions from
the center of mass-vertices-to the furthermost and
nearest vertex), but the original center of mass values
are still required as reference values for watermark
retrieval. One possibility, of course, would be to tessel-
late bins in the 0 and 1 regions. The optimization prob-
lem then changes from pushing the center of mass in a
certain half-plane (2D) to moving the center of mass in
the region that encodes the desired bit value. Even if this
works, the grade of robustness would be minimal.

This article should increase the focus on surface nor-
mal distribution as a feature suitable for embedding pri-
vate watermarks with the potential for resistance
against various polygon altering operations. In the case
of polygon simplification, the tests performed have
proven the algorithm’s potential. Future work will
include improving the watermarking system’s robust-
ness against cut operations and more severe attacks such
as nonuniform scaling. a

References
1. E. Koch and J. Zhao, “Towards Robust and Hidden Image

Copyright Labeling,” Proc. 1995 IEEE Workshop on Nonlin-
ear Signal andlmage Processing, June 1995, IEEE CS Press,
Los AIamitos, Calif., pp. 452-455.

2. J. Zhao and E. Koch, “A Digital Watermarking System for
Multimedia Copyright Protection,” Proc. ACMMuZtimedia
96, ACM Press, New York, Nov. 1996, pp. 443-444.

3. A.G. Bors and I. Pitas, “Image Watermarking using DCT
Domain Constraints,” IEEE Int. Conf. on Image Processing,
IEEE Press, Piscataway, N.J., 1996, pp. 231-234.

4. I. Cox et al., “Secure Spread Spectrum Watermarking for
Images, Audio, and Video,” ZEEE Int’I Conf. Image Process-
ing, Vol. 3, IEEE Press, Piscataway, N.J., 1996, pp. 243-246.

5. B. Hartung, F. Hartung, and B. Girod, “Digital Water-
marking of Raw and Compressed Video,” Proc. European
EOWSPIE S’p. Advanced Imaging and Network Technolo-
gies, Society of Photo-Optical Instrumentation Engineers,
Bellingham, Wash., 1996.

6. L. Boney, A.I. Tewfik, and K.I. Hamdy, “Digital Watermarks
for Audio Signals,” Proc. EUSIPCO 96, Vol. III, VIII Euro-
pean Signal Processing Conf., 1996, pp. 1697-1700.

7. R. Ohbuchi, H. Masuda, and N. Aono, “Watermarking
Three-Dimensional Polygonal Models,” ACM Multimedia
97,1997, ACM Press, New York, pp. 261-272.

8. B.K.P. Horn, Robot Vision, The MIT Electrical Engineering
and Computing Series, MIT Press, Cambridge, Mass., 1986.

9. K. Ikeuchi, DeterminingAttitude ofobjectfiom Needle Map
Using &ended Gaussian Image, MIT, A.I. Memo No. 714,
Cambridge, Mass., Apr. 1983.

10. W.H. Press et al., NumericalRecipes in C-TheArtofScien-
rific Programming, 2nd Ed., “Section 10.4: Downhill Sim-
plex Method in Multidimensions,” Cambridge University
Press, Cambridge, UK, 1992, pp. 408-412.

11. J. Doellner and K. Him-i&s, MAM/VRS-ModeIingandAni-
mation Machine/Virtual Renderings Sys. V. 2.0, http://
wwwmathuni-muenster.de/math/inst/info/u/mam.

12. J. Cohen et al., “Simplification Envelopes,” Computer
Graphics Proc., Ann. Conf. Series, ACM Siggraph, ACM
Press, New York, 1996, pp. 119-128.

13. Simplification Envelopes V. 1.2 implementation,
http://www.cs.unc.edu/-geom/envelope.htmI.

14. Tessel application V. 2.0, http://www3.uniovi.es/
-quimica.fisica/qcg/tesseI/tessel.htmI.

OZiver Benedens works as a
researcher at the Fraunhofer Insti-
tutefor Computer Graphics inDarrn-
stadt, Germany. He received a
university degree in computer science
at the Technical Universiry ofDarm-
stadt in 1996. His main research

interest is robust watermarking techniquesfocusing on 30
data. Other interests coversecure communications and the
field ofelectronic commerce.

Readers may contact Benedens at Fraunhofer Institute
of Computer Graphics, Rundeturmstrasse 6, 064283
Darmstadt, Germany, e-mail benedens@igd.jhg.de.

	edoc_991136893.sf298.pdf
	Form SF298 Citation Data

